Lusi mud eruption triggered by geometric focusing of seismic waves

M. Lupi, E. H. Saenger, F. Fuchs and S. A. Miller

Supplementary Figure 1. Measured Vp and Vs profiles (a) from the BJP-1 borehole. The Vp record extends to about 300 m depth, while the Vs record does not begin until the casing shoe at about 1100 m depth. Notice that Vs is about 380 m/s in the mud layer. A zoom-in of a portion of the record (b) shows increasing Vp with depth above the mud layer, between about 700 m and 875 m depth (blue line), indicative of a normally compacting horizon. A reduction in Vp at depths from 875 m to 1150 m indicates significantly reduced effective stress from the over-pressured and under-consolidated mud layer.

SUPPLEMENTARY INFORMATION

Supplementary Figure 2. Experimental data showing large reductions in Vp/Vs ratios with increasing effective stress. We used the measured Vp of 2000 m/s at the top of the mud layer to estimate a Vs of about 750 m/s at this boundary. The recorded S-wave velocity of 380 m/s in the mud layer (Vp/Vs=4.5, supplementary fig 4) indicates low effective stress representative of an under-consolidated and over-pressured horizon, typically referred to as low-velocity zones. Modified from [Lee, 2010].

2

SUPPLEMENTARY INFORMATION

Supplementary Figure 3. The complete montage of the well log recorded for the BJP1 borehole. In our original study, we interpreted the top of the mud layer to exist at about 1,100 m depth based on a published velocity profile. However, well log data recorded at borehole BJP1 show that the mud layer begins at ~900 m and we have adjusted our analyses and interpretations accordingly.

Supplementary Figure 4. Measured Vp/Vs ratios showing persistently elevated ratios of about 4.5 within the mud layer indicative of a low effective stress (high pore pressure) environment.

References:

Lee, M.W., (2006c), A simple method of predicting S-wave velocity: Geophysics, v. 71, p. F161–F164.

Lee, M. W. (2010), Predicting S-Wave Velocities for Unconsolidated Sediments at Low Effective Pressure, USGS Scientific Investigations report 2010-5138.

Walton, K., (1987), The effective elastic moduli of a random packing of spheres: Journal of the Mechanics and Physics of Solids, v. 35, p. 213–226.

Zimmer, M.A., (2003), Seismic velocities in unconsolidated sands—Measurements of pressure, sorting, and compaction effects: Palo Alto, Calif., Stanford, Ph. D thesis 204 p.